Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander D. Vasiliev,^a* Alexander M. Astachov,^b Maxim S. Molokeev,^a Ludmila A. Kruglyakova^b and Rudolf S. Stepanov^b

^aInstitute of Physics, Krasnoyarsk 660036, Russia, and ^bSiberian State Technological University, pr. Mira 82, Krasnoyarsk 660049, Russia

Correspondence e-mail: adva@iph.krasn.ru

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.036 wR factor = 0.106 Data-to-parameter ratio = 11.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The structure of the title compound, $C_3H_8N_4O_2$, is similar to other nitrimines. The nitroguanyl group is planar and is stabilized by an intramolecular hydrogen bond. Intermolecular hydrogen bonds hold the molecules together in the crystal.

1-Ethyl-2-nitroguanidine

Received 6 January 2003 Accepted 10 January 2003 Online 24 January 2003

Comment

As a continuation of work on the structures of nitrimines (Choi, 1981; Nordenson, 1981a,b; Nordenson & Hvoslef, 1981; Rice et al., 1984; Oyumi et al., 1987; Gao et al., 1991; Astachov et al., 2001; Vasiliev et al., 2001), we report here the crystal structure of 1-ethyl-2-nitroguanidine, (I). The molecular structure of (I) corresponds to that of previously investigated nitrimines. Like other nitrimines, the delocalization of π electron density gives values of C–N, N–N and N–O bond lengths intermediate between those characteristic of single and double bonds (Table 1). The formal double bond C1=N2 is, in fact, 0.052–0.057 Å longer than the C1–N3 and C1–N4 bonds. The planar geometry of the nitroguanyl group (r.m.s. deviation 0.065 Å and maximum deviation 0.104 Å) is stabilized by an $O1 \cdots H1$ intramolecular hydrogen bond (Table 2). In other nitrimines, the N-H···O angles are in the range 105– 126°, and the O···H distance is in the range 1.72–2.24 Å (Allen, 2002). The ethyl group does not participate in conjugation of the nitroguanyl fragment and, as a consequence, the N4-C2 bond length is close to those observed in compounds with a single C-N bond (Allen, 2002).

In the crystal structure, each molecule of (I) is connected by three intermolecular hydrogen bonds with two neighbouring molecules (Fig. 1 and Table 2). Atom O1 is involved in intramolecular hydrogen bonding and forms a hydrogen bond with H2 of another molecule. In addition, the molecules are connected, in pairs, by two N2···H3 hydrogen bonds. The second O atom, O2, does not participate in hydrogen bonding and, for this reason, the N1–O2 bond is shorter than the N1– O1 bond by 0.027 Å. This hydrogen-bond network is typical for nitrimines (Allen, 2002).

The structure of (I) agrees well with the methyl derivative of nitroguanidine 1-methyl-2-nitroguanidine, (II) (Nordenson, 1981*a*). The low-temperature study of (II) exhibits almost identical geometry and, with the exception of N1-N2, all

Printed in Great Britain - all rights reserved

© 2003 International Union of Crystallography

Figure 1

The packing arrangement (I) in the crystal, with the atomic numbering scheme. Dashed lines indicate intra- and intermolecular hydrogen bonds.

other differences in bond lengths between (I) and (II) do not exceed 2σ . The molecular packing in (I) and (II) is also very similar: they have the same space-group symmetry and number of molecules in the unit cell, and the same hydrogen bonds with nearly equal geometric parameters.

Experimental

Compound (I) was synthesized as described previously by Fishbein & Gallaghan (1954). Single crystals were obtained by evaporation in air of an aqueous solution of (I).

Crystal data

-	
$C_{3}H_{8}N_{4}O_{2}$ $M_{r} = 132.13$ Monoclinic, $P2_{1}/n$ $a = 8.9336 (9) Å$ $b = 16.087 (2) Å$ $c = 4.3173 (4) Å$ $\beta = 96.119 (8)^{\circ}$ $V = 616.92 (11) Å^{3}$ $Z = 4$	$D_x = 1.423 \text{ Mg m}^{-3}$ Cu K\alpha radiation Cell parameters from 25 reflections $\theta = 20-27^\circ$ $\mu = 1.02 \text{ mm}^{-1}$ T = 293 (2) K Lump, colourless $0.32 \times 0.27 \times 0.26 \text{ mm}$
Data collection	
Kuma KM-4 diffractometer $\theta/2\theta$ scans Absorption correction: none 1325 measured reflections 1168 independent reflections 1049 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$	$\theta_{\text{max}} = 69.9^{\circ}$ $h = -10 \rightarrow 10$ $k = -19 \rightarrow 16$ $l = 0 \rightarrow 5$ 2 standard reflections every 50 reflections intensity variation: 0.5%
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.106$ S = 1.04 1168 reflections 102 parameters H atoms treated by a mixture of independent and constrained refinement	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0632P)^{2} + 0.1271P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$ Extinction correction: <i>SHELXL97</i> Extinction coefficient: 0.044 (3)

Table 1 Selected geometric parameters (Å, °).

N2-N1	1.3276 (15)	C1-N3	1.3164 (17)
N2-C1	1.3718 (16)	C1-N4	1.3188 (17)
O2-N1	1.2303 (15)	N4-C2	1.4528 (17)
O1-N1	1.2555 (15)	C2-C3	1.502 (2)
N1-N2-C1	119.72 (10)	O2-N1-O1	120.36 (11)
N3-C1-N4	121.28 (12)	O2-N1-N2	115.99 (11)
N3-C1-N2	126.41 (12)	O1-N1-N2	123.64 (11)
N4-C1-N2	112.31 (11)	N4-C2-C3	113.56 (12)
C1-N4-C2	125.65 (11)		
N1-N2-C1-N3	4.4 (2)	C1-N2-N1-O2	-176.20(12)
N1-N2-C1-N4	-176.27(11)	C1-N2-N1-O1	4.9 (2)
N3-C1-N4-C2	-1.5(2)	C1-N4-C2-C3	89.75 (17)
N2-C1-N4-C2	179.13 (12)		

Table 2Hydrogen-bonding geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N4-H3\cdots N2^{i}$	0.82 (2)	2.23 (2)	3.035 (2)	170 (1)
$N3-H2\cdots O1^{ii}$	0.87(2)	2.04 (2)	2.896 (2)	165 (1)
$N3-H1\cdots O1$	0.85 (2)	1.89 (2)	2.565 (2)	136 (1)

Symmetry codes: (i) 1 - x, -y, -z; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, \frac{1}{2} + z$.

H atoms were located in a difference Fourier map and were refined as riding atoms for CH_2 and CH_3 groups and as free atoms for NH and NH_2 groups. Furthermore, the C-H distance was refined as one parameter for CH_2 and CH_3 groups.

Data collection: *KM*-4 *Software* (Kuma, 1991); cell refinement: *KM*-4 *Software*; data reduction: *DATARED* in *KM*-4 *Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Sheldrick, 1995); software used to prepare material for publication: *SHELXL*97.

We are grateful to the Russian Foundation of Fundamental Investigations for partial financial support of the work (grant No. 00-15-96790).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Astachov, A. M., Gelemurzina, I. V., Vasiliev, A. D., Nefedov, A. A., Kruglyakova, L. A. & Stepanov, R. S. (2001). *Energetic Materials – Ignition, Combustion and Detonation*. 32st International ICT Conference, July 3–6, 2001, Karlsruhe, Germany, pp. 139/1–139/10.
- Choi, C. S. (1981). Acta Cryst. B37, 1955–1957.
- Fishbein, L. & Gallaghan, J. A. (1954). J. Am. Chem. Soc. 76, 1877-1879.
- Gao, A., Rheingold, A. L. & Brill, T. B. (1991). Propel. Explos. Pyrotechnics, 16, 97–104.
- Kuma (1991). KM-4 Software. Kuma Diffraction, Wrocław, Poland.
- Nordenson, S. (1981a). Acta Cryst. B37, 1543-1547.
- Nordenson, S. (1981b). Acta Cryst. B37, 1774-1776.
- Nordenson, S. & Hvoslef, J. (1981). Acta Cryst. B37, 373-378.
- Oyumi, Y., Rheingold, A. L. & Brill, T. B. (1987). *Propel. Explos. Pyrotechnics*, **12**, 46–52.
- Rice, S., Cheng, M. Y., Cramer, R. E., Mandel, M., Mower, H. F. & Seff, K. (1984). J. Am. Chem. Soc. 106, 239–243.
- Sheldrick, G. M. (1995). *SHELXTL*. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Vasiliev, A. D., Astachov, A. M., Nefedov, A. A., Kruglyakova, L. A. & Stepanov, R. S. (2001). Acta Cryst. C57, 625–626.